Code No: R10206/R10

Set No. 1

I B.Tech II Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICAL METHODS
(Common to Mechanical Engineering, Electronics \& Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank of a Matrix using Echelon form where $A=\left[\begin{array}{cccc}1 & -1 & 2 & 0 \\ 0 & 1 & 2 & 1 \\ 5 & 3 & 14 & 4\end{array}\right]$
(b) Show that equations $\mathrm{x}+\mathrm{y}+\mathrm{z}=6, \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=14 \mathrm{x}+4 \mathrm{y}+7 \mathrm{z}=30$ are consistent and solve them
$[7+8]$
2. Verify Cayley - Hamilton theorem, find A^{-1} and A^{3} if $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 5\end{array}\right]$
3. Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 x y-2 y z+2 z x$ to the canonical form by orthogonal reduction. Also find its nature and Signature
[15]
4. (a) Find the root of the equation $x^{3}-6 x+4=0$ by Newton-Raphson's Method correct to five decimal places
(b) Find a root of the equation $x \log _{10} x=1.2$ by Bisection method.
5. (a) Find $y(1.6)$ using Newton's forward difference formula from the table

X	1	1.4	1.8	2.2
Y	3.49	4.82	5.96	6.5

(b) Using Gauss's forward interpolation formula find y at $\mathrm{x}=1.7489$ given that

$\mathrm{X}:$	1.72	1.73	1.74	1.75	1.76	1.77	1.78
$\mathrm{Y}:$	0.1791	0.1773	0.1775	0.1738	0.1720	0.1703	0.1686

6. (a) The population of a certain town (as obtained from census data) is shown in the following table:

Year	1891	1901	1911	1921	1931
Population(in thousand)	46	66	81	93	101

Estimate the rate of growth of the population in the year 1921
(b) When a train is moving at $30 \mathrm{~m} / \mathrm{sec}$, steam is shut off and brakes are applied.

The speed of the train per second after t seconds is given by

Time (t):	0	5	10	15	20	25	30	35	40
Speed (v):	30	24	19.5	16	13.6	11.7	10	8.5	7.0

Using Simpson's rule, determine the distance moved by the train in 40 seconds. [8+7]
7. (a) Solve $y^{1}=1+x y$ subject to the condition $y(0)=1$ by Taylor series method and hence find $y(0.2)$
(b) Solve $y^{1}=x+y+x y$ subject to the condition $y(0)=1$ by Picard's method and hence find $y(0.1)$
8. (a) Fit a least square straight line to the following data

x	1	2	3	4	5
y	16	19	23	26	30

(b) Fit a least square parabola $\mathrm{y}=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}$ to the following data

x	0	1	2	3	4
y	2.1	3.5	5.4	7.3	8.2

Code No: R10206/R10

Set No. 2

I B.Tech II Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICAL METHODS
(Common to Mechanical Engineering, Electronics \& Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find rank of matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -2 & 0 \\ 3 & 1 & 4 \\ -2 & 3 & 1\end{array}\right]$ using Normal form.
(b) Solve system of equations, if consistent $x+y+2 z=4,2 x-y+3 z=9,3 x-y-z=2$
2. Using Cayley - Hamilton theorem find A^{8} if $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$
3. Find the transformation which will transform $4 x^{2}+3 y^{2}+z^{2}-8 x y-6 y z+4 z x$ into a sum of square and find the reduced from
4. (a) Find a real root of the equation $x^{3}-x-4=0$, using Regula - Falsi method.
(b) Find a real root of the equation $x e^{x}-\cos x=0$ using Newton-Raphson's method.
5. (a) Using the Gauss forward interpolation formula, find the value of $\log _{10} 347.5$ from the following table

x	320	330	340	350	360
$\mathrm{Y}=\log _{10}$	2.5052	2.5185	2.5315	2.5441	2.5563

(b) Compute the approximate value of $e^{0.35}$, using the following table:

x	0	0.1	0.2	0.3	0.4
e^{x}	1.0000	1.1052	1.2214	1.3499	1.4918

6. (a) The population of a certain town (as obtained from census data) is shown in the following table:

Year	1951	1961	1971	1981	1991
Population(in thousand)	19.96	39.65	58.81	77.21	94.61

Estimate the rate of growth of the population in the year 1981
(b) The following table gives the value of $\mathrm{f}(\mathrm{x})$ at equal intervals of x .

X	0	0.5	1.0	1.5	2.0
y	0.399	0.352	0.242	0.129	0.054

Evaluate $\int_{0}^{2} f(x) d x$ using Simpsons $1 / 3$ and Simpsons $3 / 8$ rule.
7. (a) Solve $y^{1}=1-y$ subject to the condition $y(0)=0$ by Taylor series method hence find $\mathrm{y}(0.1), \mathrm{y}(0.2)$
(b) Solve $\mathrm{y}^{1}=1+\mathrm{y}^{2}$ subject to the condition $\mathrm{y}(0)=0$ by Picard's method $[8+7]$
8. (a) Fit a least square parabola $\mathrm{y}=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}$ to the following data

x	1	2	3	4	5
y	2	3	5	8	10

(b) Find the best fit of the type $\mathrm{y}=\mathrm{ae}^{b x}$ to the data by the method of least squares

x	1	1.2	1.4	1.6
y	40.17	73.196	133.372	243.02

$$
[8+7]
$$

Code No: R10206/R10

Set No. 3

I B.Tech II Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICAL METHODS
(Common to Mechanical Engineering, Electronics \& Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank of matrix using Echelon form $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right]$
(b) Solve the equations using Gauss Jordan method
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=8,2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+2 \mathrm{x}_{3}=19,4 \mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3}=23$
2. (a) Find Eigen Vectors of $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
(b) The Eigen vectors corresponding to two different eigen values are linearly independent
3. Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 x y-2 y z+2 z x$ to the canonical form by orthogonal reduction. Also find its nature and Signature
4. (a) Prove that $\sqrt[b]{a}$ can be evaluated by using the iterative procedure
$x_{n+1}=\frac{1}{b}\left\{(b-1) x_{n}+\frac{a}{x_{n}^{b-1}}\right\}$ and hence find $\sqrt[3]{2}$
(b) Find the real root of the equation $x^{3}-x-1=0$ by Bisection method. [7+8]
5. (a) Prove the following.
(i) $\triangle \nabla=\triangle-\nabla$
(ii) $\triangle E=E \nabla=\nabla$
(b) From the following table of values of $y=f(x)$, find $f(0.53)$, using the Newton's backward interpolation formula.

x	0.30	0.40	0.50	0.60
$\mathrm{Y}=\mathrm{f}(\mathrm{x})$	0.6179	0.6554	0.6915	0.6915

6. (a) From the following data find $f^{\prime}(0.5)$

x	0	1	2	3	4	5
$\mathrm{f}(\mathrm{x})$	4	8	15	7	6	2

(b) Evaluate $\int_{0}^{1} e^{-x^{2}}$ dx taking $\mathrm{h}=0.2$ using
(i) Simpson's $\frac{1}{3} r d$ rule (ii) Trapezoidal rule.
7. (a) Solve $y^{1}=1-y, y(0)=0$ by Euler's method and find y at $x=0.1,0.2$
(b) Solve $\mathrm{y}^{1}=\mathrm{y}-\mathrm{x}, \mathrm{y}(0)=2, \mathrm{~h}=0.2$, by fourth order $\mathrm{R}-\mathrm{K}$ method and hence find $\mathrm{y}(0.2)$
8. (a) Fit a curve of the type $\mathrm{y}=\mathrm{ae}^{b x}$ to the data by the method of least squares

x	0	1	2	3	4	5	6	7	8
y	20	30	52	77	135	211	326	550	1052

(b) Fit a least square parabola $\mathrm{y}=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}$ to the following data

x	0.0	0.2	0.4	0.7	0.9	1
y	1.016	0.768	0.648	0.401	0.272	0.193

Code No: R10206/R10

Set No. 4

I B.Tech II Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICAL METHODS
(Common to Mechanical Engineering, Electronics \& Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find rank of matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -2 & 0 \\ 3 & 1 & 4 \\ -2 & 3 & 1\end{array}\right]$ using Normal form.
(b) Solve system of equations, if consistent $x+y+2 z=4,2 x-y+3 z=9,3 x-y-z=2$
$[7+8]$
2. (a) Prove that the Eigen values of a triangular matrix are diagonal elements of the matrix
(b) Find eigen vectors of $\mathrm{B}=2 \mathrm{~A}^{2}-\mathrm{A}+3 \mathrm{I}$ when $A=\left[\begin{array}{cc}8 & -4 \\ 2 & 2\end{array}\right] \quad[5+10]$
3. Determine the diagonal matrix diagonally similar to the real symmetric matrix $\mathbf{A}=\left[\begin{array}{lll}2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2\end{array}\right]$
4. (a) solve the equation $\mathrm{x}^{3}+2 \mathrm{x}^{2}+0.4=0$ using Newton's -Raphson's Method.
(b) Show that the iteration scheme $\phi(x)=\frac{-1}{x^{2}-3}$ converges and hence find a real root of $f(x)=x^{3}-3 x+1=0$ near $x=3$.
5. (a) (i) Solve $\Delta\left(e^{a x} \log b x\right)$ (ii) Prove that $\nabla^{6} y_{8}=\Delta^{6} y_{2}$.
(b) From the following table for find $f(3.3)$ using gauss forward interpolation formula.

x	1	2	3	4	5
$\mathrm{Y}=\mathrm{f}(\mathrm{x})$	15.30	15.10	15.00	14.50	14.00

6. (a) For the following data, find $\frac{d y}{d x} a n d \frac{d^{2} y}{d x^{2}}$ at (i) $\mathrm{x}=1.1$ and (ii) $\mathrm{x}=1.6$

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6
y	7.989	8.403	8.781	9.129	9.451	9.750	10.031

(b) Evaluate $\int_{2}^{10} \frac{d x}{1+x}$ using (i) Trapezoidal and (ii) Simpson's $\frac{1}{3}$ rule, taking $\mathrm{h}=$ 1.0 and compare the results with the exact value
7. (a) Solve $y^{1}=x+\sin y, y(0)=1$ by modified Euler's method and hence find $y(o .2)$, $\mathrm{y}(\mathrm{o} .4)$ with $\mathrm{h}=0.2$
(b) Solve $\mathrm{y}^{1}=3 \mathrm{x}-4 \mathrm{y}, \mathrm{y}(0)=2, \mathrm{~h}=0.2$ find $\mathrm{y}(0.4)$ by R-K method
8. (a) Fit a least square straight line to the following data

x	1	2	3	4	5
y	16	19	23	26	30

(b) Fit a least square parabola $\mathrm{y}=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}$ to the following data

x	0	1	2	3	4
y	2.1	3.5	5.4	7.3	8.2

