Set No. 1

Code No: R10206/R10

I B.Tech II Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICAL METHODS

(Common to Mechanical Engineering, Electronics & Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

1. (a) Find rank of a Matrix using Echelon form where $A = \begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & 1 & 2 & 1 \\ 5 & 3 & 14 & 4 \end{bmatrix}$

- (b) Show that equations x+y+z=6, x+2y+3z=14 x+4y+7z=30 are consistent and solve them [7+8]
- 2. Verify Cayley Hamilton theorem, find A^{-1} and A^{3} if $A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 5 \end{bmatrix}$ [15]
- 3. Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 2xy 2yz + 2zx$ to the canonical form by orthogonal reduction. Also find its nature and Signature [15]
- 4. (a) Find the root of the equation $x^3 6x + 4 = 0$ by Newton-Raphson's Method correct to five decimal places
 - (b) Find a root of the equation $x \log_{10} x = 1.2$ by Bisection method. [8+7]
- 5. (a) Find y(1.6) using Newton's forward difference formula from the table

Χ	1	1.4	1.8	2.2
Y	3.49	4.82	5.96	6.5

(b) Using Gauss's forward interpolation formula find y at x = 1.7489 given that X: 1.72 1.73 1.74 1.75 1.76 1.77 1.78

	-							
Y:	0.1791	0.1773	0.1775	0.1738	0.1720	0.1703	0.1686	[8+7]

6. (a) The population of a certain town (as obtained from census data) is shown in the following table:

Year	1891	1901	1911	1921	1931
Population(in	46	66	81	93	101
thousand)					
	C 1	C 1 1		1001	

Estimate the rate of growth of the population in the year 1921

(b) When a train is moving at 30 m/sec, steam is shut off and brakes are applied. The speed of the train per second after t seconds is given by

Time (t):	0	5	10	15	20	25	30	35	40
Speed(v):	30	24	19.5	16	13.6	11.7	10	8.5	7.0

|"|'||||"|"|"|

Code No: R10206/R10

Using Simpson's rule, determine the distance moved by the train in 40 seconds. [8+7]

- 7. (a) Solve $y^1=1+xy$ subject to the condition y(0)=1 by Taylor series method and hence find y(0.2)
 - (b) Solve $y^1 = x + y + xy$ subject to the condition y(0) = 1 by Picard's method and hence find y(0.1) [8+7]
- 8. (a) Fit a least square straight line to the following data

х	1	2	3	4	5
У	16	19	23	26	30

(b) Fit a least square parabola $y = a+bx+cx^2$ to the following data

X	0	1	2	3	4	[8+7]
У	2.1	3.5	5.4	7.3	8.2	

Code No: R10206/R10

I B.Tech II Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICAL METHODS

(Common to Mechanical Engineering, Electronics & Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Set No. 2

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) Find rank of matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -2 & 0 \\ 3 & 1 & 4 \\ -2 & 3 & 1 \end{bmatrix}$ using Normal form.

(b) Solve system of equations, if consistent x+y+2z=4 , 2x-y+3z=9, 3x-y-z=2 $[7\!+\!8]$

- 2. Using Cayley Hamilton theorem find A^8 if $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ [15]
- 3. Find the transformation which will transform $4x^2 + 3y^2 + z^2 8xy 6yz + 4zx$ into a sum of square and find the reduced from [15]
- 4. (a) Find a real root of the equation $x^3 x 4 = 0$, using Regula Falsi method.
 - (b) Find a real root of the equation $xe^x \cos x = 0$ using Newton-Raphson's method. [8+7]
- 5. (a) Using the Gauss forward interpolation formula, find the value of $\log_{10} 347.5$ from the following table

х	320	330	340	350	360
$Y = log_{10}$	2.5052	2.5185	2.5315	2.5441	2.5563

(b) Compute the approximate value of $e^{0.35}$, using the following table:

X	0	0.1	0.2	0.3	0.4	
e^x	1.0000	1.1052	1.2214	1.3499	1.4918	[8+

6. (a) The population of a certain town (as obtained from census data) is shown in the following table:

Year	1951	1961	1971	1981	1991
Population(in	19.96	39.65	58.81	77.21	94.61
thousand)					

Estimate the rate of growth of the population in the year 1981

Code No: R10206/R10

Set No. 2

(b) The following table gives the value of f(x) at equal intervals of x.

Х	0	0.5	1.0	1.5	2.0
У	0.399	0.352	0.242	0.129	0.054

Evaluate $\int_0^2 f(x) dx$ using Simpsons 1/3 and Simpsons 3/8 rule. [8+7]

- 7. (a) Solve $y^1=1-y$ subject to the condition y(0)=0 by Taylor series method hence find y(0.1), y(0.2)
 - (b) Solve $y^1 = 1 + y^2$ subject to the condition y(0) = 0 by Picard's method [8+7]
- 8. (a) Fit a least square parabola $y = a+bx+cx^2$ to the following data

Х	1	2	3	4	5
у	2	3	5	8	10

(b) Find the best fit of the type $y=ae^{bx}$ to the data by the method of least squares

х	1	1.2	1.4	1.6	[8+7]
У	40.17	73.196	133.372	243.02	

Code No: R10206/R10

I B.Tech II Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICAL METHODS

(Common to Mechanical Engineering, Electronics & Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Set No. 3

Answer any FIVE Questions All Questions carry equal marks

1. (a) Find rank of matrix using Echelon form $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$

- (b) Solve the equations using Gauss Jordan method $x_1+x_2+x_3=8$, $2x_1+3x_2+2x_3=19$, $4x_1+2x_2+3x_3=23$ [7+8]
- 2. (a) Find Eigen Vectors of $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$
 - (b) The Eigen vectors corresponding to two different eigen values are linearly independent [10+5]
- 3. Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 2xy 2yz + 2zx$ to the canonical form by orthogonal reduction. Also find its nature and Signature [15]
- 4. (a) Prove that $\sqrt[b]{a}$ can be evaluated by using the iterative procedure $x_{n+1} = \frac{1}{b} \{ (b-1)x_n + \frac{a}{x_n^{b-1}} \}$ and hence find $\sqrt[3]{2}$
 - (b) Find the real root of the equation $x^3 x 1 = 0$ by Bisection method. [7+8]
- 5. (a) Prove the following. (i) $\triangle \nabla = \triangle \nabla$ (ii) $\triangle E = E\nabla = \nabla$
 - (b) From the following table of values of y = f(x), find f(0.53), using the Newton's backward interpolation formula.

X	0.30	0.40	0.50	0.60	
Y=f(x)	0.6179	0.6554	0.6915	0.6915	[8+]

6. (a) From the following data find f'(0.5)

X	0	1	2	3	4	5
f(x)	4	8	15	7	6	2

- (b) Evaluate $\int_0^1 e^{-x^2} dx$ taking h=0.2 using (i) Simpson's $\frac{1}{3}rd$ rule (ii) Trapezoidal rule. [8+7]
- 7. (a) Solve $y^1=1-y$, y(0)=0 by Euler's method and find y at x=0.1, 0.2
 - (b) Solve y¹=y-x, y(0)=2,h=0.2 , by fourth order R-K method and hence find y(0.2) $\left[7{+}8\right]$

Code No: R10206/R10

8.	(a) Fit a curve of the type $y=ae^{bx}$ to the data by the method of least squares										
		х	0	1	2	3	4	5	6	7	8
		У	20	30	52	77	135	211	326	550	1052

(b)	Fit a least squar	e parabola y=	$a+bx+cx^2$	2 to the	e followir	ıg data

Х	0.0	0.2	0.4	0.7	0.9	1	[7_8]
У	1.016	0.768	0.648	0.401	0.272	0.193	[1+0]

Code No: R10206/R10

I B.Tech II Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICAL METHODS

(Common to Mechanical Engineering, Electronics & Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Set No. 4

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

1. (a) Find rank of matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -2 & 0 \\ 3 & 1 & 4 \\ -2 & 3 & 1 \end{bmatrix}$ using Normal form.

(b) Solve system of equations, if consistent x+y+2z=4 , 2x-y+3z=9, 3x-y-z=2 $[7{+}8]$

2. (a) Prove that the Eigen values of a triangular matrix are diagonal elements of the matrix

(b) Find eigen vectors of B=2A²- A + 3I when
$$A = \begin{bmatrix} 8 & -4 \\ 2 & 2 \end{bmatrix}$$
 [5+10]

3. Determine the diagonal matrix diagonally similar to the real symmetric matrix $\mathbf{A} = \begin{bmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{bmatrix}$ [15]

- 4. (a) solve the equation $x^3+2x^2+0.4=0$ using Newton's -Raphson's Method.
 - (b) Show that the iteration scheme $\phi(x) = \frac{-1}{x^2-3}$ converges and hence find a real root of $f(x) = x^3-3x+1=0$ near x=3. [8+7]
- 5. (a) (i) Solve $\Delta (e^{ax} \log bx)$ (ii) Prove that $\nabla^6 y_8 = \Delta^6 y_2$.
 - (b) From the following table for find f(3.3) using gauss forward interpolation formula.

Х	1	2	3	4	5	
Y = f(x)	15.30	15.10	15.00	14.50	14.00	[8+7]

6. (a) For the following data, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at (i) x = 1.1 and (ii) x = 1.6

	-	u.	t ui	. ,		. ,	
Х	1.0	1.1	1.2	1.3	1.4	1.5	1.6
у	7.989	8.403	8.781	9.129	9.451	9.750	10.031

(b) Evaluate $\int_{2}^{10} \frac{dx}{1+x}$ using (i) Trapezoidal and (ii) Simpson's $\frac{1}{3}$ rule, taking h = 1.0 and compare the results with the exact value [8+7]

Code No: R10206/R10

- 7. (a) Solve y¹=x+siny, y(0)=1 by modified Euler's method and hence find y(0.2), y(0.4)with h=0.2
 - (b) Solve $y^1=3x-4y$, y(0)=2, h=0.2 find y(0.4) by R-K method [8+7]
- 8. (a) Fit a least square straight line to the following data

х	1	2	3	4	5
У	16	19	23	26	30

(b) Fit a least square parabola $y = a+bx+cx^2$ to the following data

х	0	1	2	3	4	[8+7]
У	2.1	3.5	5.4	7.3	8.2	
